Twenty-five years ago, geneticists hypothesized that all humans have a common maternal origin in Africa (popularly referred to as "Mitochondrial Eve"). Patterns of the human migration Out of Africa and their dispersal across Eurasia were later explored in minute detail using human genetic data from hundreds of populations across the world, largely with mitochondrial and Y chromosome DNA. Recently, the invention of next-generation sequencing has been used to generate massive new genomic datasets and recover ancient genomic material from long dead hominins. We will discuss whether previous models of human evolution hold-up with new genomic data. When and where did modern humans originate? What happened when humans moved Out of Africa? Do these ancient demographic events have any relevance for human populations today?

Brenna Henn began her PhD by studying the deep population structure and complex migration patterns of African hunter-gatherer groups. Motivated by her prior PhD (2009) training in anthropology and evolutionary genetics at Stanford University, she aims to approach questions of genetic and phenotypic diversity from an interdisciplinary standpoint. After her Ph.d., she enjoyed a ‘personal genomics’
interlude at 23andMe, Inc. working on their ancestry team and doing research development with Dr. Joanna Mountain. Brenna then began a postdoctoral position in Dr. Carlos Bustamante’s lab (2010) in the Dept. of Genetics, Stanford University School of Medicine. During the postdoc, Brenna led several African genomic projects aimed at understanding the origins of modern humans and dispersals Out-of-Africa. Recently, Brenna joined Stony Brook University, SUNY as an assistant professor in the Dept. of Ecology and Evolution (2013).

LIVING WORLD LECTURES are part of Stony Brook University's Science Open Nights. For more information and links to other lecture series please Google: Stony Brook Living World.